हिंदी

Prove the Following Trigonometric Identities Cosec6θ = Cot6θ + 3 Cot2θ Cosec2θ + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities

cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1

उत्तर

We need to prove cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1

Solving the L.H.S, we get

`cosec^6 theta = (cosec^2 theta)^3`

`= (1 + cot^2 theta)^3`     .......`(1 + cot^2 theta = cosec^2 theta)`

Further using the identity `(a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2`  we get

`(1 + cot^2 theta)^3 = 1 + cot^6 theta + 3(1)^2 (cot^2 theta) + 3(1) (cot^2 theta)^2`

`= 1 + cot^6 theta + 3 cot^2 theta + 3 cot^4 theta`

`= 1 + cot^6 theta + 3 cot^2 theta (1 + cot^2 theta)`

`= 1 + cot^6 theta + 3 cot^2 theta cosec^2 theta`    `(using 1 + cot^2 theta = cosec^2 theta)`

Hence proved.

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 32 | पृष्ठ ४४

संबंधित प्रश्न

Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9. 


If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =


If cos A + cos2 A = 1, then sin2 A + sin4 A =


(sec A + tan A) (1 − sin A) = ______.


If cos  \[9\theta\] = sin \[\theta\] and  \[9\theta\]  < 900 , then the value of tan \[6 \theta\] is


Simplify 

sin A `[[sinA   -cosA],["cos A"  " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`


Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ


Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`


Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ


Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)


If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.


Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×