Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
उत्तर
We need to prove cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Solving the L.H.S, we get
`cosec^6 theta = (cosec^2 theta)^3`
`= (1 + cot^2 theta)^3` .......`(1 + cot^2 theta = cosec^2 theta)`
Further using the identity `(a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2` we get
`(1 + cot^2 theta)^3 = 1 + cot^6 theta + 3(1)^2 (cot^2 theta) + 3(1) (cot^2 theta)^2`
`= 1 + cot^6 theta + 3 cot^2 theta + 3 cot^4 theta`
`= 1 + cot^6 theta + 3 cot^2 theta (1 + cot^2 theta)`
`= 1 + cot^6 theta + 3 cot^2 theta cosec^2 theta` `(using 1 + cot^2 theta = cosec^2 theta)`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
If cos A + cos2 A = 1, then sin2 A + sin4 A =
(sec A + tan A) (1 − sin A) = ______.
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.