Advertisements
Advertisements
प्रश्न
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
उत्तर
LHS = cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1
= cot θ. cot θ - cosec θ. cosec θ + 1
= (cot2θ - cosec2θ) + 1
= - 1 + 1 = 0
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove that cot2θ × sec2θ = cot2θ + 1
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3