Advertisements
Advertisements
प्रश्न
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
उत्तर
LHS = `cosA/(1 - tanA) + sin^2A/(sinA - cosA)`
= `cosA/(1 - sinA/cosA) + sin^2A/(sinA - cosA)`
= `cosA/((cosA - sinA)/(cosA)) + sin^2A/(sinA - cosA)`
= `cos^2A/((cosA - sinA)) - sin^2A/((cosA - sinA))`
= `(cos^2A - sin^2A)/(cosA - sinA) = ((cosA + sinA)(cosA - sinA))/((cosA - sinA))`
= (cosA + sinA)
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
tan θ cosec2 θ – tan θ is equal to
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`