Advertisements
Advertisements
Question
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Solution
LHS = `cosA/(1 - tanA) + sin^2A/(sinA - cosA)`
= `cosA/(1 - sinA/cosA) + sin^2A/(sinA - cosA)`
= `cosA/((cosA - sinA)/(cosA)) + sin^2A/(sinA - cosA)`
= `cos^2A/((cosA - sinA)) - sin^2A/((cosA - sinA))`
= `(cos^2A - sin^2A)/(cosA - sinA) = ((cosA + sinA)(cosA - sinA))/((cosA - sinA))`
= (cosA + sinA)
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
`(1-cos^2theta) sec^2 theta = tan^2 theta`
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.