English

Prove the Following Identity : Tan 2 a − Tan 2 B = Sin 2 a − Sin 2 B Cos 2 a Cos 2 B - Mathematics

Advertisements
Advertisements

Question

Prove the following identity : 

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`

Sum

Solution

LHS = `tan^2A - tan^2B`

= `sin^2A/cos^2A - sin^2B/cos^2B`

= `(sin^2Acos^2B - cos^2Asin^2B)/(cos^2Acos^2B)`

= `((1 - cos^2A)cos^2B - cos^2A(1 - cos^2B))/(cos^2Acos^2B)`

= `(cos^2B - cos^2Acos^2B - cos^2A + cos^2Acos^2B)/(cos^2Acos^2B)`

= `(cos^2B - cos^2A)/(cos^2Acos^2B)`

= `((1 - sin^2B) - (1 - sin^2A))/(cos^2Acos^2B)`

= `(sin^2A - sin^2B)/(cos^2Acos^2B)`

Hence `tan^2A - tan^2B = (cos^2B - cos^2A)/(cos^2A cos^2B) = (sin^2A - sin^2B)/(cos^2Acos^2B)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometric Identities - Exercise 21.1

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 21 Trigonometric Identities
Exercise 21.1 | Q 5.04
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×