Advertisements
Advertisements
Question
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Solution
LHS = `tan^2A - tan^2B`
= `sin^2A/cos^2A - sin^2B/cos^2B`
= `(sin^2Acos^2B - cos^2Asin^2B)/(cos^2Acos^2B)`
= `((1 - cos^2A)cos^2B - cos^2A(1 - cos^2B))/(cos^2Acos^2B)`
= `(cos^2B - cos^2Acos^2B - cos^2A + cos^2Acos^2B)/(cos^2Acos^2B)`
= `(cos^2B - cos^2A)/(cos^2Acos^2B)`
= `((1 - sin^2B) - (1 - sin^2A))/(cos^2Acos^2B)`
= `(sin^2A - sin^2B)/(cos^2Acos^2B)`
Hence `tan^2A - tan^2B = (cos^2B - cos^2A)/(cos^2A cos^2B) = (sin^2A - sin^2B)/(cos^2Acos^2B)`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
(sec A + tan A) (1 − sin A) = ______.
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`