Advertisements
Advertisements
Question
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Solution
LHS = `(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA)`
= `((sinA + cosA)^2 + (sinA - cosA)^2)/((sinA + cosA)(sinA - cosA))`
= `(sin^2A + cos^2A + 2sinA cosA + sin^2A + cos^2A - 2sinA cosA)/(sin^2A - cos^2A)`
= `(2(sin^2A + cos^2A))/(sin^2A - cos^2A)`
= `2/(sin^2A - cos^2A)` [`sin^2A + cos^2A = 1`]
= `2/(sin^2A - cos^2A) = 2/(sin^2A - (1 - sin^2A))`
⇒ `2/(2sin^2A - 1)`
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
If cosθ = `5/13`, then find sinθ.
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Choose the correct alternative:
cos θ. sec θ = ?