Advertisements
Advertisements
Question
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
Solution
L.H.S. = x2 + y2 + z2
= (r cos A cos B)2 + (r cos A sin B)2 + (r sin A)2
= r2 cos2 A cos2 B + r2 cos2 A sin2 B + r2 sin2 A
= r2 cos2 A (cos2 B + sin2 B) + r2 sin2 A
= r2 (cos2 A + sin2 A)
= r2 = R.H.S.
APPEARS IN
RELATED QUESTIONS
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ