Advertisements
Advertisements
Question
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
Solution
We have `m^2 + n^2 = [(a cos theta + b sin theta)^2 + ( a sin theta - b cos theta )^2 ]`
=` ( a^2 cos^2 theta + b^2 sin ^2 theta + 2 ab cos theta sin theta)`
+`(a^2 sin^2 theta + b^2 cos^2 theta -2ab cos theta sin theta)`
=`a^2 cos^2 theta + b^2 sin^2 theta + a^2 sin^2 theta + b^2 vos^2 theta`
=`(a^2 cos^2 theta + b^2 sin^2 theta) + ( b^2 cos^2 theta + b^2 sin^2 theta )`
=`a^2 (cos^2 theta + sin^2 theta ) + b^2 ( cos^2 theta + sin^2 theta )`
=`a^2 + b^2 [∵ sin^2 + cos^2 = 1]`
Hence , `m^2 + n^2 = a^2 + b^2`
APPEARS IN
RELATED QUESTIONS
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
If 2sin2β − cos2β = 2, then β is ______.
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ