English

If cosec θ + cot θ = p, then prove that cos θ = p2-1p2+1 - Mathematics

Advertisements
Advertisements

Question

If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`

Sum

Solution

According to the question,

cosec θ + cot θ = p

Since, cosec θ = `1/sintheta` and cot θ = `costheta/sintheta`

`1/sintheta + costheta/sintheta` = p

`(1 + costheta)/sintheta` = p

Squaring on L.H.S and R.H.S,

`((1 + costheta)/sin theta)^2` = p2

`(1 + cos^2 theta + 2 cos theta)/(sin^2 theta)` = p2

Applying component and dividend rule,

`((1 + cos^2 theta + 2 cos theta) - sin^2 theta)/((1 + cos^2 theta + 2 cos theta) + sin^2 theta) = ("p"^2 - 1)/("p"^2 + 1)`

= `((1 - sin^2theta) + cos^2 theta + 2 cos theta)/(sin^2 theta + cos^2 theta + 1 + 2 cos theta) = ("p"^2 - 1)/("p"^2 + 1)`

Since, 1 – sin2θ = cos2θ and sin2θ + cos2θ = 1

`(cos^2 theta + cos^2 theta + 2 cos theta)/(1 + 1 + 2 cos theta) = ("p"^2 - 1)/("p"^2 + 1)`

`(2 cos^2 theta + 2 cos theta)/(2 + 2 cos theta) = ("p"^2 - 1)/("p"^2 + 1)`

`(2 cos theta(cos theta + 1))/(2(cos theta + 1)) = ("p"^2 - 1)/("p"^2 + 1)`

cos θ = `("p"^2 - 1)/("p"^2 + 1)`

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction To Trigonometry and Its Applications - Exercise 8.4 [Page 99]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 10
Chapter 8 Introduction To Trigonometry and Its Applications
Exercise 8.4 | Q 1 | Page 99

RELATED QUESTIONS

`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`

 


Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`


If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9. 


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`


Prove the following identity : 

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


If sec θ = `25/7`, then find the value of tan θ.


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Choose the correct alternative:

cos θ. sec θ = ?


Given that sin θ = `a/b`, then cos θ is equal to ______.


sin(45° + θ) – cos(45° – θ) is equal to ______.


Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos  (α - β)/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×