English

Find the Value of `(Cos 38° Cosec 52°)/(Tan 18° Tan 35° Tan 60° Tan 72° Tan 55°)` - Mathematics

Advertisements
Advertisements

Question

Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`

Solution

`(cos 38°   cosec 52°)/(tan 18°   tan 35°   tan 60°   tan 72°  tan 55°)`

`= ( cos 38 °    sec (90°-52°))/( cot (90° -18° ) cot (90° -35° ) tan 60° tan 72° tan 55°)`

 =` (cos 38°  sec 38°)/( cot 72° cot 55°  tan 60°   tan 72°  tan 55°)`

=`(cos 38° xx1/(cos 38°))/(1/(tan 72°) xx1/( tan 55°) xx sqrt(3 ) xx tan 72° xx tan 55°)`

=`1/sqrt(3)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 3

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 3 | Q 38

RELATED QUESTIONS

Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.


Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.


Prove the following trigonometric identities.

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`


`1+(tan^2 theta)/((1+ sec theta))= sec theta`


`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`


Simplify : 2 sin30 + 3 tan45.


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]


If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then 


Prove the following identity : 

`sqrt(cosec^2q - 1) = "cosq  cosecq"`


Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.


Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ


If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.


If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×