Advertisements
Advertisements
Question
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
Solution
`(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
`= ( cos 38 ° sec (90°-52°))/( cot (90° -18° ) cot (90° -35° ) tan 60° tan 72° tan 55°)`
=` (cos 38° sec 38°)/( cot 72° cot 55° tan 60° tan 72° tan 55°)`
=`(cos 38° xx1/(cos 38°))/(1/(tan 72°) xx1/( tan 55°) xx sqrt(3 ) xx tan 72° xx tan 55°)`
=`1/sqrt(3)`
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
Simplify : 2 sin30 + 3 tan45.
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.