Advertisements
Advertisements
Question
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Options
\[x^2 + y^2 + z^2 = r^2\]
\[x^2 + y^2 - z^2 = r^2\]
\[x^2 - y^2 + z^2 = r^2\]
\[z^2 + y^2 - x^2 = r^2\]
Solution
Given:
`x= r sin θ cos Φ,`
`y=r sinθ sinΦ `
`z= r cos θ`
Squaring and adding these equations, we get
`x^2+y^2+z^2=(r sinθ cosΦ )^2+(r sin θ sinΦ )^2+(r cos θ)^2`
`= x^2+y^2+z^2=r^2 sin^2θ cos^2Φ+r^2 sin^2θsin^2Φ+r^2 cos^2θ `
`=x^2+y^2+z^2=(r^2 sin^2θ cos^2Φ+r^2 sin^2 sin^2Φ)+r^2 cos^2Φ`
`=x^2+y^2+z^2=r^2sin^2θ(cos^2Φ+sin^2Φ)+r^2 cos^2Φ`
`=x^2+y^2+z^2=r^2 sin^2θ(1)+r^2 cos^2θ`
`=x^2+y^2+z^2=r^2 sin^2θ+r^2 cos^2θ`
`=x^2+y^2+z^2=r^2(sin^2θ+cos^2θ)`
`=x^2+y^2+z^2=r^2(1)`
`=x^2+y^2+z^2=r^2`
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.