Advertisements
Advertisements
Question
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
Solution
`cosec^2 theta (1+ cos theta )(1- cos theta)`
= `cosec^2 theta (1- cos^2 theta)`
=`1/ sin^2 theta xx sin^2 theta `
= 1
APPEARS IN
RELATED QUESTIONS
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
tan θ cosec2 θ – tan θ is equal to
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.