Advertisements
Advertisements
प्रश्न
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
उत्तर
`cosec^2 theta (1+ cos theta )(1- cos theta)`
= `cosec^2 theta (1- cos^2 theta)`
=`1/ sin^2 theta xx sin^2 theta `
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
sin(45° + θ) – cos(45° – θ) is equal to ______.
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.