Advertisements
Advertisements
प्रश्न
sin(45° + θ) – cos(45° – θ) is equal to ______.
पर्याय
2cosθ
0
2sinθ
1
उत्तर
sin(45° + θ) – cos(45° – θ) is equal to 0.
Explanation:
sin(45° + θ) – cos(45° – θ)
= cos[90° – (45° + θ)] – cos(45° – θ) ...[∵ cos(90° – θ) = sinθ]
= cos(45° – θ) – cos(45° – θ)
= 0
APPEARS IN
संबंधित प्रश्न
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Choose the correct alternative:
1 + tan2 θ = ?
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
If tan θ × A = sin θ, then A = ?
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1
(1 – cos2 A) is equal to ______.