Advertisements
Advertisements
प्रश्न
(1 – cos2 A) is equal to ______.
पर्याय
sin2 A
tan2 A
1 – sin2 A
sec2 A
उत्तर
(1 – cos2 A) is equal to sin2 A.
Explanation:
We know that,
sin2 A + cos2 A = 1
`\implies` 1 – cos2 A = sin2 A
Therefore,
1 – cos2 A is equal to sin2 A
APPEARS IN
संबंधित प्रश्न
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.