मराठी

(1 – cos2 A) is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

(1 – cos2 A) is equal to ______.

पर्याय

  • sin2 A

  • tan2 A

  • 1 – sin2 A

  • sec2 A

MCQ
रिकाम्या जागा भरा

उत्तर

(1 – cos2 A) is equal to sin2 A.

Explanation:

We know that,

sin2 A + cos2 A = 1

`\implies` 1 – cos2 A = sin2 A

Therefore, 

1 – cos2 A is equal to sin2 A

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (March) Basic (Board Sample Paper)

संबंधित प्रश्‍न

Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.


Prove the following trigonometric identities.

(1 + cot A − cosec A) (1 + tan A + sec A) = 2


Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B


If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.


`cosec theta (1+costheta)(cosectheta - cot theta )=1`


`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`


If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`


Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`


Prove the following identity :

`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


Prove that  `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.


Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.


Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove that:  `1/(sec θ - tan θ) = sec θ + tan θ`.


Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ. 


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×