Advertisements
Advertisements
Question
(1 – cos2 A) is equal to ______.
Options
sin2 A
tan2 A
1 – sin2 A
sec2 A
Solution
(1 – cos2 A) is equal to sin2 A.
Explanation:
We know that,
sin2 A + cos2 A = 1
`\implies` 1 – cos2 A = sin2 A
Therefore,
1 – cos2 A is equal to sin2 A
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Write the value of cos1° cos 2°........cos180° .
From the figure find the value of sinθ.
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
Choose the correct alternative:
tan (90 – θ) = ?
If 3 sin θ = 4 cos θ, then sec θ = ?
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.