English

Prove the Following Trigonometric Identities. (Cosec θ − Sec θ) (Cot θ − Tan θ) = (Cosec θ + Sec θ) ( Sec θ Cosec θ − 2) - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)

Solution

We have to prove

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)

Consider the LHS.

`(cosec θ − sec θ) (cot θ − tan θ) = (1/sin theta - 1/cos theta)(cos theta/sin theta - sin theta/cos theta)`

`= ((cos theta - sin theta)/(sin theta cos theta))((cos^2 theta - sin^2 theta)/(sin theta cos theta))`

`= (cos theta - sin theta)/(sin theta cos theta) ((cos theta + sin theta)(cos theta - sin theta))/(sin theta cos theta)`

`= ((cos theta + sin theta)(cos theta - sin theta)^2)/(sin^2 theta cos^2 theta)`

Now, consider the RHS.

`(cosec θ + sec θ) ( sec θ cosec θ − 2) = (1/sin theta + 1/cos theta) (1/cos theta 1/sin theta - 2)`

`= ((cos theta + sin theta)/(sin theta cos theta))((1- 2sin theta cos theta)/(sin theta cos theta))`

`= ((cos theta + sin theta))/(sin theta cos theta) ((cos^2 theta + sin^2 theta - 2 cos theta sin theta))/(sin theta cos theta)`

`= ((cos theta + sin theta)(cos theta - sin theta)^2)/(sin^2 theta cos^2 theta)`

∴ LHS = RHS

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 61 | Page 46

RELATED QUESTIONS

Prove the following identities:

`cosA/(1 - sinA) = sec A + tan A`


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Prove the following identities:

`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`


Prove that:

`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`


If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2


`(sec^2 theta-1) cot ^2 theta=1`


`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


Show that none of the following is an identity: 

`sin^2 theta + sin  theta =2`


The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]


Prove the following identity :

`(cotA + tanB)/(cotB + tanA) = cotAtanB`


Prove the following identity : 

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`


Prove the following identity : 

`sec^4A - sec^2A = sin^2A/cos^4A`


Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to


`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.

Activity:

`5/(sin^2theta) - 5cot^2theta`

= `square (1/(sin^2theta) - cot^2theta)`

= `5(square - cot^2theta)   ......[1/(sin^2theta) = square]`

= 5(1)

= `square`


sec θ when expressed in term of cot θ, is equal to ______.


Prove the following identity:

(sin2θ – 1)(tan2θ + 1) + 1 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×