Advertisements
Advertisements
Question
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Solution
LHS = `sinA/sin(90^circ - A) + cosA/cos(90^circ - A)`
⇒ `cos(90^circ - A)/sin(90^circ - A) + sin(90^circ - A)/cos(90^circ - A)`
⇒ `(cos^2(90^circ - A) + sin^2(90^circ - A))/(sin(90^circ - A) . cos(90^circ - A)) = 1/(sin(90^circ - A) . cos(90^circ - A))`
⇒ `sec(90^circ - A) cosec(90^circ - A)`
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Show that : tan 10° tan 15° tan 75° tan 80° = 1
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α