Advertisements
Advertisements
प्रश्न
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
उत्तर
LHS = `sinA/sin(90^circ - A) + cosA/cos(90^circ - A)`
⇒ `cos(90^circ - A)/sin(90^circ - A) + sin(90^circ - A)/cos(90^circ - A)`
⇒ `(cos^2(90^circ - A) + sin^2(90^circ - A))/(sin(90^circ - A) . cos(90^circ - A)) = 1/(sin(90^circ - A) . cos(90^circ - A))`
⇒ `sec(90^circ - A) cosec(90^circ - A)`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
`(sec^2 theta-1) cot ^2 theta=1`
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
If sin θ = `1/2`, then find the value of θ.
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)