Advertisements
Advertisements
प्रश्न
If sin θ = `1/2`, then find the value of θ.
उत्तर
sin θ = `1/2`
`sin 30^circ = 1/2` ................ [using trignometric table]
∴ θ = 30°
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
cosec4θ − cosec2θ = cot4θ + cot2θ
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
sec4 A − sec2 A is equal to
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
If cosθ = `5/13`, then find sinθ.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`
If sin A = `1/2`, then the value of sec A is ______.
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.
(1 – cos2 A) is equal to ______.