Advertisements
Advertisements
प्रश्न
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
उत्तर
Given (1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Let us assume that
(1 + cos α)(1 + cos β)(1 + cos γ) = (1 -cos α)(1 - cos β)(1 - cos γ) = L
Weknow that `sin^2 theta + cos^2 theta = 1`
Then, we have
L X L = (1 + cos α)(1 +_ cos β)(1 + cos γ) x (1 - cos α)(1 - cos β)(1 - cos γ)
=> :^2 = {(1 - cos α)(1 - cos α)}{(1 + cos β)(1 - cos β)}{(1 + cos γ)(1 - cos γ)}
`=> L^2 = (1 - cos^2 α )(1 - cos^2 β)(1 - cos^2 γ)`
`=> L^2 = sin^2 α sin^2 β sin^2 γ`
`=> L = +- sin α sin β sin γ`
Therefore, we have
`(1 + cos α)(1 + cos β)(1 + cos γ) = (1 - cos α)(1 - cos β)(1 - cos γ) = +- sin α sin β sin γ`
Taking the expression with the positive sign, we have
`(1 + cos α)(1 + cos β)(1 + cos γ) = (1 - cos α)(1 - cos β)(1 - cos γ) = sin α sin β sin γ`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.