рдорд░рд╛рдареА

`(Tan a + Tanb )/(Cot a + Cot B) = Tan a Tan B` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

`(tan A + tanB )/(cot A + cot B) = tan A tan B`

рдЙрддреНрддрд░

LHS = `(tan A + tanB )/(cot A + cot B) `

       =`(tan A + tan B)/(1/ tan A + 1/ tanB)`

       =` (tan A + tan B)/( (tan A+tan B)/ (tan A tan B)`

        =`(tan A tan B ( tan A + tan B))/((tan A + tan B ))`

        = ЁЭСбЁЭСОЁЭСЫЁЭР┤ ЁЭСбЁЭСОЁЭСЫЁЭР╡
        = RHS
Hence, LHS = RHS

shaalaa.com
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
рдкрд╛рда 8: Trigonometric Identities - Exercises 1

APPEARS IN

рд╡реНрд╣рд┐рдбрд┐рдУ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [6]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди

If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2

 


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


Prove the following trigonometric identities.

`cos A/(1 - tan A) + sin A/(1 - cot A)  = sin A + cos A`


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove that:

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


`(1 + cot^2 theta ) sin^2 theta =1`


`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`


Write the value of cos1° cos 2°........cos180° .


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


If cos A + cos2 A = 1, then sin2 A + sin4 A =


If a cos θ − b sin θ = c, then a sin θ + b cos θ =


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove that:

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`


Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`


If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.


Prove that `sec"A"/(tan "A" + cot "A")` = sin A


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×