Advertisements
Advertisements
प्रश्न
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
उत्तर
L.H.S. = `(cosecA - sinA)(secA - cosA)`
= `(1/sinA - sinA)(1/cosA - cosA)`
= `((1 - sin^2A)/sinA)((1 - cos^2A)/cosA)`
= `(cos^2A/sinA)(sin^2A/cosA)`
= sin A cos A
R.H.S. = `1/(tanA + cotA)`
= `1/(sinA/cosA + cosA/sinA)`
= `1/((sin^2A + cos^2A)/(sinAcosA))`
= `(sinAcosA)/(sin^2A + cos^2A)`
= `(sinAcosA)/1`
= sin A cos A
∴ L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
What is the value of (1 − cos2 θ) cosec2 θ?
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
If sec θ = `25/7`, then find the value of tan θ.
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
If tan α + cot α = 2, then tan20α + cot20α = ______.
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.