Advertisements
Advertisements
प्रश्न
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
उत्तर
we get :
`x^2 = (acosθ)^2 = a^2cos^2θ`
`y^2 = (bcotθ)^2 = b^2cot^2θ`
LHS = `a^2/x^2 - b^2/y^2 = a^2/(a^2cos^2θ) - b^2/(b^2 cot^2θ) = 1/(cos^2θ) - 1/cot^2θ`
⇒ LHS = `sec^2θ - tan^2θ = 1 ["Since" 1 + tan^2θ = sec^2θ]`
APPEARS IN
संबंधित प्रश्न
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to