Advertisements
Advertisements
प्रश्न
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
पर्याय
25
`1/25`
5
1
उत्तर
`1/25`
Explanation;
Hint:
5x = sec θ
x = `(sec theta/5)`
∴ x2 = `(sec^2 theta)/25`
`5/x` = tan θ
`1/x = tan theta/5`
`1/x^2 = (tan^2 theta)/25`
`x^2 - 1/x^2 = (sec^2 theta)/25 - (tan^2 theta)/25`
= `(sec^2 theta - tan^2 theta)/25`
= `1/25`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.