Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
उत्तर
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
⇒ `sin^4A + cos^4A + 2sin^2Acos^2A = 1`
LHS = `(sin^2A + cos^2A)^2`
= 1 = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
If tan θ × A = sin θ, then A = ?
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`