Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
उत्तर
LHS = `(cosecA - sinA)(secA - cosA)`
= `(1/sinA - sinA)(1/cosA - cosA)`
= `((1-sin^2A)/(sinA))((1 - cos^2A)/cosA)`
= `(cos^2A/sinA)(sin^2A/cosA)` = cosA.sinA
RHS = `1/(tanA + cotA)`
= `1/(sinA/cosA + cosA/sinA) = 1/((sin^2A + cos^2A)/(sinA.cosA))` = cosA.sinA
Hence , LHS = RHS
APPEARS IN
संबंधित प्रश्न
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Choose the correct alternative:
cos θ. sec θ = ?
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?