Advertisements
Advertisements
प्रश्न
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
उत्तर
LHS = `tan^2A - tan^2B`
= `sin^2A/cos^2A - sin^2B/cos^2B`
= `(sin^2Acos^2B - cos^2Asin^2B)/(cos^2Acos^2B)`
= `((1 - cos^2A)cos^2B - cos^2A(1 - cos^2B))/(cos^2Acos^2B)`
= `(cos^2B - cos^2Acos^2B - cos^2A + cos^2Acos^2B)/(cos^2Acos^2B)`
= `(cos^2B - cos^2A)/(cos^2Acos^2B)`
= `((1 - sin^2B) - (1 - sin^2A))/(cos^2Acos^2B)`
= `(sin^2A - sin^2B)/(cos^2Acos^2B)`
Hence `tan^2A - tan^2B = (cos^2B - cos^2A)/(cos^2A cos^2B) = (sin^2A - sin^2B)/(cos^2Acos^2B)`
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ