Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
उत्तर
We need to prove `((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Solving the L.H.S, we get
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = (sec^2 theta (cot theta))/(cosec^2 theta)`
Using `sec theta = 1/cos theta, cot theta = cos theta/sin theta`. `cosec theta = 1/sin theta` we get
`(sec^2 theta(cot theta))/(cosec^2 theta) = (1/cos^2 theta (cos theta/sin theta))/(1/sin^2 theta)`
`= (1/(cos theta sin theta))/(1/sin^2 theta)`
`= sin^2 theta/(cos theta sin theta)`
`= sin theta/cos theta`
`= tan theta`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
sec θ when expressed in term of cot θ, is equal to ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ