मराठी

Prove the Following Trigonometric Identities. ((1 + Tan^2 Theta)Cot Theta)/((Cosec^2 Theta = Tan Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`

उत्तर

We need to prove `((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`

Solving the L.H.S, we get

`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = (sec^2 theta (cot theta))/(cosec^2 theta)`

Using `sec theta = 1/cos theta, cot theta = cos theta/sin theta`. `cosec theta = 1/sin theta` we get

`(sec^2 theta(cot theta))/(cosec^2 theta) = (1/cos^2 theta (cos theta/sin theta))/(1/sin^2 theta)`

`= (1/(cos theta sin theta))/(1/sin^2 theta)`

`= sin^2 theta/(cos theta sin theta)`

`= sin theta/cos theta`

`= tan theta`

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 33 | पृष्ठ ४४

संबंधित प्रश्‍न

Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`


Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`


Prove the following identities:

`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`


Show that : tan 10° tan 15° tan 75° tan 80° = 1


Prove that:

`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`


`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     


`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`


If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`


\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to


Without using trigonometric table , evaluate : 

`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`


Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0


If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


sec θ when expressed in term of cot θ, is equal to ______.


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


Prove that (sec θ + tan θ) (1 – sin θ) = cos θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×