Advertisements
Advertisements
प्रश्न
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
उत्तर
LHS = `((1+ tan^2 theta) cot theta)/ (cosec^2 theta) `
=` (sec^2 theta cot theta)/(cosec^2 theta )`
=`(1/cos^2thetaxxcos theta/sin theta)/(1/sin^2 theta)`
=`1/(cos theta sin theta) xx sin^2 theta`
=`sintheta/costheta`
=` tan theta`
=RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
sin2θ + sin2(90 – θ) = ?
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.