Advertisements
Advertisements
प्रश्न
sin2θ + sin2(90 – θ) = ?
पर्याय
0
1
2
`sqrt(2)`
उत्तर
1
Explanation:
(sin (90 – θ))2 = (cosθ)2
sin2 (90 – θ) = cos2θ ...(1)
sin2θ + cos2θ = 1
∴ sin2θ + sin2(90 – θ) = 1 ...From (1)
संबंधित प्रश्न
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Write the value of tan10° tan 20° tan 70° tan 80° .
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
What is the value of 9cot2 θ − 9cosec2 θ?
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
(sec θ + tan θ) . (sec θ – tan θ) = ?
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.