Advertisements
Advertisements
प्रश्न
sin2θ + sin2(90 – θ) = ?
विकल्प
0
1
2
`sqrt(2)`
उत्तर
1
Explanation:
(sin (90 – θ))2 = (cosθ)2
sin2 (90 – θ) = cos2θ ...(1)
sin2θ + cos2θ = 1
∴ sin2θ + sin2(90 – θ) = 1 ...From (1)
संबंधित प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
From the figure find the value of sinθ.
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
If cos θ = `24/25`, then sin θ = ?
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ