Advertisements
Advertisements
प्रश्न
From the figure find the value of sinθ.
उत्तर
`sinθ = ("AB")/("AC")`
`sinθ = 3/5`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
(sec θ + tan θ) . (sec θ – tan θ) = ?
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?