Advertisements
Advertisements
प्रश्न
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
उत्तर
`(sinA - cosA)(1 + tanA + cotA)`
= `sinA + (sin^2A)/cosA + cosA - cosA - sinA - (cos^2A)/sinA`
= `(sin^2A)/cosA - (cos^2A)/sinA`
= `secA/(cosec^2A) - (cosecA)/(sec^2A)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
From the figure find the value of sinθ.
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Choose the correct alternative:
sec 60° = ?
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A