Advertisements
Advertisements
प्रश्न
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
उत्तर
LHS = cot θ - tan θ
= `cos θ/sin θ - sin θ/cos θ`
= `(cos^2 θ - sin^2 θ)/(sin θ. cos θ)`
= `(cos^2 θ - (1 - cos^2 θ))/(sin θ. cos θ)`
= `(2cos^2 θ - 1)/(sin θ. cos θ)`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)