Advertisements
Advertisements
प्रश्न
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
उत्तर
LHS = cot θ - tan θ
= `cos θ/sin θ - sin θ/cos θ`
= `(cos^2 θ - sin^2 θ)/(sin θ. cos θ)`
= `(cos^2 θ - (1 - cos^2 θ))/(sin θ. cos θ)`
= `(2cos^2 θ - 1)/(sin θ. cos θ)`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove that `cosA/(1+sinA) + tan A = secA`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Choose the correct alternative:
cos 45° = ?
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)