Advertisements
Advertisements
प्रश्न
Prove that `cosA/(1+sinA) + tan A = secA`
उत्तर
L.H.S `cosA/(1+sinA) + tan A`
`= (cos A(1-sinA))/((1+sinA)(1-sinA)) + sinA/cosA`
`= (cosA - sinAcosA)/(1-sin^2A) + sinA/cosA`
`= (cosA - sinAcosA)/cos^2A + sinA/cosA`
`= 1/cosA - sinA/cosA + sinA/cosA`
`= 1/cosA`
= secA
=R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α