Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
उत्तर
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) ` [`∵ sec^2 theta - tan^2 theta = 1 - cosec^2 theta - cot^2 theta = 1`]
`= tan theta + cos^2 theta = cot^3 theta xx sin^3 theta`
`[∵ 1/sec^2 theta = cos^2 theta, 1/cosec^2 theta = 1 + cot^2 theta]`
`sin^3 theta/cos^3 theta xx cos^2 theta + cos^3 theta/sin^3 theta xx sin^2 theta`
`sin^3 theta/cos theta + cos^3 theta/sin theta`
`= (sin^4 theta + cos^4 theta)/(sin theta cos theta)`
` (1 - 2sin^2 theta cos^2 theta)/(sin theta cos theta)`
`1/(sin theta cos theta) - (2 sin^2 theta cos^2 theta)/(sin theta cos theta)`
`sec theta cosec theta - 2sin theta cos theta`.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
Simplify : 2 sin30 + 3 tan45.
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
(1 – cos2 A) is equal to ______.
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1