Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Solution
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) ` [`∵ sec^2 theta - tan^2 theta = 1 - cosec^2 theta - cot^2 theta = 1`]
`= tan theta + cos^2 theta = cot^3 theta xx sin^3 theta`
`[∵ 1/sec^2 theta = cos^2 theta, 1/cosec^2 theta = 1 + cot^2 theta]`
`sin^3 theta/cos^3 theta xx cos^2 theta + cos^3 theta/sin^3 theta xx sin^2 theta`
`sin^3 theta/cos theta + cos^3 theta/sin theta`
`= (sin^4 theta + cos^4 theta)/(sin theta cos theta)`
` (1 - 2sin^2 theta cos^2 theta)/(sin theta cos theta)`
`1/(sin theta cos theta) - (2 sin^2 theta cos^2 theta)/(sin theta cos theta)`
`sec theta cosec theta - 2sin theta cos theta`.
APPEARS IN
RELATED QUESTIONS
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that sec2θ – cos2θ = tan2θ + sin2θ
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.