Advertisements
Advertisements
Question
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Solution
In the given question, we are given `T_n = sin^n theta + cos^n theta`
We need to prove `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Here L.H.S is
`(T_3 - T_5)/T_1 = ((sin^3 theta = cos^3 theta) - (sin^5 theta + cos^5 theta))/((sin theta + cos theta))`
Now, solving the L.H.S, we get
`((sin^3 theta + cos^3 theta)- (sin^5 theta + cos^5 theta))/((sin theta + cos theta)) = (sin^3 theta - sin^5 theta + cos^3 theta - cos^ 5 theta)/(sin theta + cos theta)`
` = (sin^3 theta (1 - sin^2 theta) + cos^3 theta (1 - cos^2 theta))/((sin theta + cos theta))`
Further Using the property `sin^2 theta + cos^2 theta = 1` we get
`cos^2 theta = 1 - sin^2 theta`
`sin^2 theta = 1 - cos^2 theta`
So,
`(sin^3 theta(1 - sin^2 theta) + cos^3 theta (1 - cos^2 theta))/(sin theta + cos theta) = (sin^3 theta cos^2 theta + cos^3 theta sin^2 theta)/(sin theta + cos theta)`
`= (sin^2 theta cos^2 theta (sin theta + cos theta))/(sin theta + cos theta)`
`= sin^2 theta cos^2 theta`
Now, solving the R.H.S, we get
`(T_5 - T_7)/T_3 = ((sin^5 theta + cois ^5)(sin^7 theta + cos^2 theta))/(sin^3 theta + cos^3 theta)`
So,
`((sin^5 theta + cos^5 theta) - (sin^7 theta + cos^7 theta))/(sin^3 theta + cos^3 theta) = (sin^5 theta - sin^7 theta + cos^5 theta - cos^7 theta)/(sin^3 theta + cos^3 theta)`
`= (sin^5 theta (1 - sin^2 theta) + cos^5 theta (1 + cos^2 theta))/ (sin^3 theta + cos^3 theta)`
`= sin^2 theta cos^2 theta`
Hence proved
APPEARS IN
RELATED QUESTIONS
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
Choose the correct alternative:
1 + tan2 θ = ?
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1