Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Solution
We need to prove `((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Solving the L.H.S, we get
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = (sec^2 theta (cot theta))/(cosec^2 theta)`
Using `sec theta = 1/cos theta, cot theta = cos theta/sin theta`. `cosec theta = 1/sin theta` we get
`(sec^2 theta(cot theta))/(cosec^2 theta) = (1/cos^2 theta (cos theta/sin theta))/(1/sin^2 theta)`
`= (1/(cos theta sin theta))/(1/sin^2 theta)`
`= sin^2 theta/(cos theta sin theta)`
`= sin theta/cos theta`
`= tan theta`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Choose the correct alternative:
1 + tan2 θ = ?
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
sec θ when expressed in term of cot θ, is equal to ______.
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.