Advertisements
Advertisements
Question
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Solution
`((1 + tan^2A)cotA)/(cosec^2A)`
= `(sec^2AcotA)/(cosec^2A) ......(∴ sec^2A = 1 + tan^2A)`
= `(1/cos^2A . cosA/sinA)/(1/sin^2A) = 1/((cosAsinA)/(1/sin^2A)`
= `sinA/cosA = tanA`
APPEARS IN
RELATED QUESTIONS
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
If cos θ = `24/25`, then sin θ = ?
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ