Advertisements
Advertisements
प्रश्न
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
उत्तर
`((1 + tan^2A)cotA)/(cosec^2A)`
= `(sec^2AcotA)/(cosec^2A) ......(∴ sec^2A = 1 + tan^2A)`
= `(1/cos^2A . cosA/sinA)/(1/sin^2A) = 1/((cosAsinA)/(1/sin^2A)`
= `sinA/cosA = tanA`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
sin2θ + sin2(90 – θ) = ?
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1