Advertisements
Advertisements
प्रश्न
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
उत्तर
LHS = `cos^2 A + 1/(cosec^2 A)`
= cos2 A + sin2 A
= 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1