Advertisements
Advertisements
प्रश्न
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
उत्तर
Given (1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Let us assume that
(1 + cos α)(1 + cos β)(1 + cos γ) = (1 -cos α)(1 - cos β)(1 - cos γ) = L
Weknow that `sin^2 theta + cos^2 theta = 1`
Then, we have
L X L = (1 + cos α)(1 +_ cos β)(1 + cos γ) x (1 - cos α)(1 - cos β)(1 - cos γ)
=> :^2 = {(1 - cos α)(1 - cos α)}{(1 + cos β)(1 - cos β)}{(1 + cos γ)(1 - cos γ)}
`=> L^2 = (1 - cos^2 α )(1 - cos^2 β)(1 - cos^2 γ)`
`=> L^2 = sin^2 α sin^2 β sin^2 γ`
`=> L = +- sin α sin β sin γ`
Therefore, we have
`(1 + cos α)(1 + cos β)(1 + cos γ) = (1 - cos α)(1 - cos β)(1 - cos γ) = +- sin α sin β sin γ`
Taking the expression with the positive sign, we have
`(1 + cos α)(1 + cos β)(1 + cos γ) = (1 - cos α)(1 - cos β)(1 - cos γ) = sin α sin β sin γ`
APPEARS IN
संबंधित प्रश्न
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ