हिंदी

Given That: (1 + Cos α) (1 + Cos β) (1 + Cos γ) = (1 − Cos α) (1 − Cos α) (1 − Cos β) (1 − Cos γ) Show that One of the Values of Each Member of this Equality is Sin α Sin β Sin γ - Mathematics

Advertisements
Advertisements

प्रश्न

Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)

Show that one of the values of each member of this equality is sin α sin β sin γ

उत्तर

Given (1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)

Let us assume that

(1 + cos α)(1 + cos β)(1 + cos γ) = (1 -cos α)(1 - cos β)(1 - cos γ) = L

Weknow that `sin^2 theta + cos^2 theta = 1`

Then, we have

L X L = (1 + cos α)(1 +_ cos β)(1 + cos γ) x (1 - cos α)(1 - cos β)(1 - cos γ)

=> :^2 = {(1 - cos α)(1 - cos α)}{(1 + cos β)(1 - cos β)}{(1 + cos γ)(1 - cos γ)}

`=> L^2 = (1 - cos^2 α )(1 - cos^2 β)(1 - cos^2 γ)`

`=> L^2 = sin^2 α sin^2 β sin^2 γ`

`=> L = +- sin α sin β sin γ`

Therefore, we have

`(1 + cos α)(1 + cos β)(1 + cos γ) = (1 - cos α)(1 - cos β)(1 - cos γ) = +- sin α sin β sin γ`

Taking the expression with the positive sign, we have

`(1  + cos α)(1 + cos β)(1 + cos γ) = (1 - cos α)(1 - cos β)(1 - cos γ) = sin α  sin β  sin γ`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 85 | पृष्ठ ४७

संबंधित प्रश्न

Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`


Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`


Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`


If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.


Prove the following identities:

`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`


Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`

 


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`


If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn 


Prove that:

`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)` 


If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.


Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1


If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.


Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ. 


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×