हिंदी

If 3 Sin θ + 5 Cos θ = 5, Prove that 5 Sin θ – 3 Cos θ = ± 3. - Mathematics

Advertisements
Advertisements

प्रश्न

If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.

योग

उत्तर

Given 3 sin θ + 5 cos θ = 5

Squaring on both sides for both the equations 

⇒ 9 sin2θ + 25 cos2θ + 30 sinθ cosθ = 25

⇒ 25 sin2θ + 9 cos2θ − 30 sinθ cosθ = x2

Adding the equations;

⇒ 34 (sin2θ + cos2θ) = 25 + x2

⇒ x2 = 34 − 25 = 9

⇒ x = ±3

∴ 5 sinθ − 3 cosθ = ±3

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 79 | पृष्ठ ४७

संबंधित प्रश्न

Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`


9 sec2 A − 9 tan2 A = ______.


Prove the following trigonometric identities.

`tan theta + 1/tan theta = sec theta cosec theta`


If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2


(i)` (1-cos^2 theta )cosec^2theta = 1`


`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`


Write the value of `3 cot^2 theta - 3 cosec^2 theta.`


If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.


From the figure find the value of sinθ.


If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.


If cos  \[9\theta\] = sin \[\theta\] and  \[9\theta\]  < 900 , then the value of tan \[6 \theta\] is


Prove the following identity : 

`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×