Advertisements
Advertisements
प्रश्न
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
उत्तर
Given 3 sin θ + 5 cos θ = 5
Squaring on both sides for both the equations
⇒ 9 sin2θ + 25 cos2θ + 30 sinθ cosθ = 25
⇒ 25 sin2θ + 9 cos2θ − 30 sinθ cosθ = x2
Adding the equations;
⇒ 34 (sin2θ + cos2θ) = 25 + x2
⇒ x2 = 34 − 25 = 9
⇒ x = ±3
∴ 5 sinθ − 3 cosθ = ±3
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
9 sec2 A − 9 tan2 A = ______.
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
(i)` (1-cos^2 theta )cosec^2theta = 1`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
From the figure find the value of sinθ.
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ