Advertisements
Advertisements
प्रश्न
(i)` (1-cos^2 theta )cosec^2theta = 1`
उत्तर
LHS= `(1-cos^2 theta) cosec^2 theta`
=`sin ^2 theta cosec^2 theta (∵ cos^2 theta + sin^2 theta =1)`
=`1/(cosec^2theta) ×cosec^2theta`
=1
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
` tan^2 theta - 1/( cos^2 theta )=-1`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Find A if tan 2A = cot (A-24°).
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
If x = a tan θ and y = b sec θ then
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α