Advertisements
Advertisements
प्रश्न
Find A if tan 2A = cot (A-24°).
उत्तर
Given :
tan 2A = cot (A-24°)
implies that tan 2A = tan [90° - (A -24°)]
implies that tan 2A = tan [90° - A + 24°]
implies that tan 2A = tan [114° - A ]
implies that 2A = 114° - A
implies that 3A = 114°
implies that A = `(114°)/3`
implies that A = 38°
संबंधित प्रश्न
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Choose the correct alternative:
1 + tan2 θ = ?
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Choose the correct alternative:
1 + cot2θ = ?
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
Prove that sin4A – cos4A = 1 – 2cos2A
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.