Advertisements
Advertisements
प्रश्न
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.
उत्तर
L.H.S. = `(1 + sec A)/sec A`
= `(1 + 1/ cos A)/(1/cos A)`
= `((cos A + 1)/cos A)/(1/cos A)`
= 1 + cos A = `((1 + cos A))/1 xx ((1 - cos A))/((1 - cos A))`
= `(1 - cos^2 A)/(1 - cos A)`
`\implies (sin^2 A)/(1 - cos A)` = R.H.S. ...(∵ sin2 A + cos2 A = 1)
APPEARS IN
संबंधित प्रश्न
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
cosec4θ − cosec2θ = cot4θ + cot2θ
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ