Advertisements
Advertisements
प्रश्न
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
उत्तर
LHS = sin( 90° - θ ) sin θ cot θ
= cos θ . sin θ . `cos θ/sin θ`
= cos2θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
Define an identity.
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0